A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems
نویسنده
چکیده
Boolean Equation Systems are a useful formalism for modeling various verification problems of finite-state concurrent systems, in particular the equivalence checking and the model checking problems. These problems can be solved on-the-fly (i.e., without constructing explicitly the state space of the system under analysis) by using a demand-driven construction and resolution of the corresponding boolean equation system. In this report, we present a generic software library dedicated to on-the-fly resolution of alternation-free boolean equation systems. Four resolution algorithms are currently provided by the library: A1 and A2 are general algorithms, the latter being optimized to produce small-depth diagnostics, whereas A3 and A4 are specialized algorithms for handling acyclic and disjunctive/conjunctive boolean equation systems in a memory-efficient way. The library is developed within the Cadp verification toolbox and is used for both on-the-fly equivalence checking (five widely-used equivalence relations are supported) and for on-the-fly model checking of alternation-free modal μ-calculus. Key-words: bisimulation, boolean equation system, labeled transition system, model-checking, mu-calculus, specification, temporal logic, verification This report is also available as “A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems”, in Hubert Garavel and John Hatcliff, editors, Proceedings of the 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS’2003 (Warsaw, Poland), April 2003. This research was partially funded by the European IST-2001-32360 Project “ArchWare” and by Bull S.A. ∗ [email protected] Un solveur générique à la volée pour les systèmes d’équations booléennes sans alternance Résumé : Les systèmes d’équations booléennes sont un formalisme utile pour modéliser différents problèmes de vérification sur les systèmes concurrents à nombre fini d’états, en particulier la vérification par équivalences et la vérification par logiques temporelles. Ces problèmes peuvent être résolus à la volée (c’est-à-dire, sans construire explicitement l’espace d’états du système à analyser) en utilisant une construction et une résolution à la demande du système d’équations booléennes correspondant. Dans ce rapport, nous présentons une bibliothèque logicielle générique dédiée à la résolution à la volée des systèmes d’équations booléennes sans alternance. La bibliothèque fournit actuellement quatre algorithmes de résolution : A1 et A2 sont des algorithmes généraux, le dernier étant optimisé pour produire des diagnostics de profondeur réduite, alors que A3 et A4 sont des algorithmes spécialisés pour réduire la consommation mémoire lors du traitement des systèmes d’équations booléennes acycliques, respectivement disjonctifs/conjonctifs. La bibliothèque est développée au sein de la bôıte à outils Cadp pour la vérification des systèmes distribués et permet d’effectuer la vérification à la volée par équivalences (cinq relations largement utilisées sont supportées) et la vérification à la volée du μ-calcul modal sans alternance. Mots-clés : bisimulation, logique temporelle, mu-calcul, spécification, système d’équations booléennes, système de transitions étiquetées, vérification énumérative A Generic On-the-Fly Solver for Alternation-Free BESs 3
منابع مشابه
Alternating Fixed Points in Boolean Equation Systems as Preferred Stable Models
We formally characterize alternating fixed points of boolean equation systems as models of (propositional) normal logic programs. To precisely capture this relationship, we introduce the notion of a preferred stable model of a logic program, and define a mapping that associates a normal logic program with a boolean equation system such that the solution to the equation system can be “read off” ...
متن کاملSolving Disjunctive/Conjunctive Boolean Equation Systems with Alternating Fixed Points
This paper presents a technique for the resolution of alternating disjunctive/conjunctive boolean equation systems. The technique can be used to solve various verification problems on finitestate concurrent systems, by encoding the problems as boolean equation systems and determining their local solutions. The main contribution of this paper is that a recent resolution technique from [13] for d...
متن کاملar X iv : c s / 06 06 09 2 v 1 [ cs . S E ] 2 1 Ju n 20 06 Static Analysis using Parameterised Boolean Equation Systems ⋆
The well-known problem of state space explosion in model checking is even more critical when applying this technique to programming languages, mainly due to the presence of complex data structures. One recent and promising approach to deal with this problem is the construction of an abstract and correct representation of the global program state allowing to match visited states during program m...
متن کاملStatic Analysis using Parameterised Boolean Equation Systems
The well-known problem of state space explosion in model checking is even more critical when applying this technique to programming languages, mainly due to the presence of complex data structures. One recent and promising approach to deal with this problem is the construction of an abstract and correct representation of the global program state allowing to match visited states during program m...
متن کاملSequential and distributed on-the-fly computation of weak tau-confluence
The notion of τ -confluence provides a form of partial order reduction of Labelled Transition Systems (Ltss), by enabling to identify the τ -transitions, whose execution does not alter the observable behaviour of the system. Several forms of τ -confluence adequate with branching bisimulation were studied in the literature, ranging from strong to weak forms according to the length of τ -transiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003